About 2,260,000 results
Open links in new tab
  1. integration - Evaluating $ \int_ {1/2}^ {\infty} \frac {\Gamma (u ...

    4 days ago · Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, …

  2. calculus - Evaluating $\int \frac {1} { {x^4+1}} dx$ - Mathematics ...

    I am trying to evaluate the integral $$\int \frac {1} {1+x^4} \mathrm dx.$$ The integrand $\frac {1} {1+x^4}$ is a rational function (quotient of two polynomials), so I could solve the integral if I ...

  3. integration - Evaluating $\sum_ {m=0}^\infty \sum_ {n=0}^\infty \frac ...

    Nov 11, 2025 · I am evaluating the following integral: $$\\int_0^{1} \\left(\\tanh^{-1}(x) + \\tan^{-1}(x)\\right)^2 \\; dx$$ After using the Taylor series of the two functions, we ...

  4. calculus - Evaluating $\int {\frac {x^ {14}+x^ {11}+x^5} { (x^6+x^3+1 ...

    Jul 2, 2025 · The following question is taken from JEE practice set. Evaluate $\displaystyle\int {\frac {x^ {14}+x^ {11}+x^5} {\left (x^6+x^3+1\right)^3}} \, \mathrm dx$. My ...

  5. Evaluating $ \\lim_{x \\to 0} \\frac{e - (1 + 2x)^{1/2x}}{x} $ without ...

    Sep 11, 2024 · The following is a question from the Joint Entrance Examination (Main) from the 09 April 2024 evening shift: $$ \lim_ {x \to 0} \frac {e - (1 + 2x)^ {1/2x}} {x} $$ is equal to: (A) $0$ (B) $\frac { …

  6. Evaluating $\iiint_B (x^2+y^2+z^2)dV$ where $B$ is the ball of radius ...

    The question asks to use spherical coords. My answer is coming out wrong and symbolab is saying I'm evaluating the integrals correctly so my set up must be wrong. Since $\\rho$ is the distance from ...

  7. calculus - Evaluating $I=\int_ {0}^ {\frac {\pi} {2}}\prod_ {k=1}^ {7 ...

    Oct 23, 2024 · I am attemping to show that $$ I \equiv \int_ {0}^ {\pi/2}\left [\prod_ {k = 1}^ {7}\cos\left (kx\right)\right] {\rm d}x = \frac {\pi} {32} $$ So far I have tried ...

  8. Evaluating $\\prod_{n=1}^{\\infty}\\left(1+\\frac{1}{2^n}\\right)$

    Sep 13, 2016 · Compute:$$\prod_ {n=1}^ {\infty}\left (1+\frac {1} {2^n}\right)$$ I and my friend came across this product. Is the product till infinity equal to $1$? If no, what is the answer?

  9. Evaluating $ \lim\limits_ {n\to\infty} \sum_ {k=1}^ {n^2} \frac {n} {n ...

    How would you evaluate the following series? $$\\lim_{n\\to\\infty} \\sum_{k=1}^{n^2} \\frac{n}{n^2+k^2} $$ Thanks.

  10. Evaluating $\\int_0^{\\infty}\\frac{\\ln(x^2+1)}{x^2+1}dx$

    How would I go about evaluating this integral? $$\int_0^ {\infty}\frac {\ln (x^2+1)} {x^2+1}dx.$$ What I've tried so far: I tried a semicircular integral in the positive imaginary part of the complex p...